在电动汽车等领域,可充电锂离子电池得到了广泛应用。然而,这些电池在温度过高时可能停止工作并着火。在一定程度上,这是因为电池内部的电解质具有易燃性。据外媒报道,斯坦福大学(Stanford University)与SLAC国家加速器实验室(SLAC National Accelerator Laboratory)的研究人员共同开发了一种不易燃的锂离子电池电解质。使用这种电解质的电池在高温下仍能继续工作,而不会起火。
传统的锂离子电池电解质由溶解在液态有机溶剂(如乙醚或碳酸盐)中的锂盐制成。这种溶剂能够促进锂离子传输,但也存在一定的起火风险。过去30年,研究人员开发了多种不易燃电解质,例如聚合物电解质,使用聚合物基质而不是经典的盐溶剂溶液来传输离子。这些替代品虽然安全性较高,但不能像液体溶剂那样有效地传输离子,无法达到传统电解质的性能水平。
该团队希望生产一种基于聚合物的电解质,能够同时提供安全性和性能。因此,斯坦福大学研究生Rachel Z Huang决定在一种聚合物基电解质中尽可能多地加入LiFSI锂盐。这种聚合物基电解质由斯坦福大学的博士后学者Jian-Cheng Lai设计和合成。
研究人员测试添加数量的极限。通常情况下,基于聚合物的电解质中盐的重量不超过50%。Huang将这一数字提高到了63%,由此创造了据称是有史以来含盐量最高的聚合物电解质之一。
与其他聚合物基电解质不同,这种电解质中还含有易燃溶剂分子。然而,在锂离子电池的测试过程中,这种被称为溶剂锚定不易燃电解质(SAFE)的整体电解质被证明在高温下不易燃。
SAFE起作用是因为溶剂和盐协同工作。在采用SAFE的电池中,溶剂分子有助于传导离子,其性能可与使用传统电解质的电池相媲美。但是,这种电池可以在77–212华氏度的温度范围内继续运行,而不像大多数锂离子电池那样在高温下容易退化。因为大量添加盐类,充当溶剂分子的锚,可防止其蒸发和着火。
研究人员表示,这一新发现为聚合物基电解质设计提出了一种新的思维方式。对于未来开发兼具高能量密度和安全性的电池,具有重要意义。
聚合物基电解质可以是固体或液体。值得一提的是,SAFE中的溶剂和盐,可使其聚合物基体塑化,成为像传统电解质一样粘稠的液体。
这种粘稠的电解质可以兼容现有市售锂离子电池部件,不同于其他已有不易燃电解质。例如,固态陶瓷电解质必须使用特殊设计的电极,因此生产成本较高。Huang表示:“有了SAFE,无需更改任何制造设置。当然,如果以前的生产过程使用过SAFE,则需要优化电解质以适应生产线,但工作量比任何其他系统要少得多。”
SAFE可能应用于电动汽车等领域。在电动汽车中,如果多个锂离子电芯靠得太近,可能互相加热,最终导致过热起火。然而,如果在电动汽车的电池中使用像SAFE这样可在高温下保持稳定的电解质,就可以将电芯紧密地包装在一起,无需担心过热。除了降低火灾风险,这还可以减少冷却系统占用的空间,使电池拥有更多的空间。增加电池数量,可以提升整体能量密度,使车辆实现更长的单次充电行驶时间。
锂电产业通公众号里的内容包括锂电池产业链交流、资讯、人脉圈。从正负极材料生产到涂布,隔膜、电解液、封装材料到检测组装等这些环节涉及的材料、辅材、添加剂、耗材,以及相关设备,相关企业介绍。为了更好促进行业人士交流,艾邦搭建有锂电池电解液微信群,欢迎大家申请加入。
长按识别二维码关注公众号,点击公众号下方菜单栏左侧“微信群”,申请加入群聊
推荐阅读
推荐活动
原文始发于微信公众号(锂电产业通):研究人员开发非易燃电解质 用盐来防止锂离子电池起火
新能源汽车的快速发展带动了动力电池的高速增长。动力电池生产流程一般可以分为前段、中段和后段三个部分。其中,前段工序包括配料、搅拌、涂布、辊压、分切等,中段工序包括卷绕/叠片、封装、烘干、注液、封口、清洗等,后段主要为化成、分容、PACK等。材料方面主要有正负极材料,隔膜,电解液,集流体,电池包相关的结构胶,缓存,阻燃,隔热,外壳结构材料等材料。
为了更好促进行业人士交流,艾邦搭建有锂电池产业链上下游交流平台,覆盖全产业链,从主机厂,到电池包厂商,正负极材料,隔膜,铝塑膜等企业以及各个工艺过程中的设备厂商,欢迎申请加入。
长按识别二维码关注公众号,点击下方菜单栏左侧“微信群”,申请加入群聊